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Abstract. In this paper, several new solutions of the evolution equation for Kelvin- 
Helmholtz waves near direct resonance are obtained by Darboux transformation. 

1. Introduction 

Ma (1984) derived an evolution equation for Kelvin-Helmholtz waves near direct 
resonance and the Lax pair associated with this equation was also found. Ma discussed 
the inverse scattering problem in the (1 + 1)-dimensional case and gave the soliton 
solutions of this equation but a simple solution, which does not decay to zero as x + CO, 

cannot be included in this method. 
Recently, a method has been suggested for generating the solutions of the non-linear 

evolution equations ( N E E )  which possess a Lax pair. This method depends on the old 
theorem proved by Darboux. It is well known that the K d v  equation 

(1.1) 

cpn = ( A  - u)cp (1.2) 

cp,= -uXcp+(2u+4A)cp,. (1.3) 

U, - ~ U U ,  + U,,, = 0 

can be deduced from the compatibility condition of the Lax pair 

Darboux had proved that if cp = ~ ( x ,  r, A )  is the general solution of (1.2),f=f(x, t ,  A,) 
is a special solution of (1.2) with A = Ao, then, by the transformation 

3 = cpx - (f,/f)cp (1.4) 

ii = U -2(lnf),, (1.5) 

g,, = ( A  - ii)@. 

Q satisfies the equation 

(1.6) 
It implies that (1.2) is ‘invariant’ under the action cp + 3, U + ii. We call (1.4) and 

(1 .5 )  the Darboux transformation ( DT). 

t On leave of absence from Department of Mathematics, University of Science and Technology of China, 
Hefei, China. 
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The relation (1.5) has been used to deduce the x part of the Backlund transformation 
for the Kdv equation by Wadati et al (1975): the connection between U and fi is a 
non-linear equation. 

We follow Darboux’s idea in another way. We find that if cp is also a solution of 
(1.3) and f is also a special solution of equation (1.3) with A = Ao, then under (DT) 

(1.4) and ( l S ) ,  (1.3) is also ‘invariant’, i.e. 

9, = - t iy@ + (20 + 4A )Q, .  (1.7) 

It  implies that if U is a solution of the Kdv equation (1.1) then fi defined by (1.5) is a 
new solution of the Kdv equation. Moreover (p defined by (1.4) is a solution of (1.6) 
and (1.7). For another special value A = A,,and a special solution f or f = Cp(x, t ,  A , )  
we obtain another new solution d = fi - (In f ) x x  for the Kdv equation. This procedure 
can be continued. 

Based on the DT (1.4) and (1 .5) ,  we can generate a series of solutions for the Kdv 
equation by solving two linear problems without solving any tedious non-linear 
equations and to generate the exact solution of the NEE without the knowledge of any 
boundary conditions, such that we can obtain not only the soliton solution but also 
another type of solution. We have successfully used this method to generate the 
solutions for several N E E  (see Li 1986a, b, 1987, Li and Gu 1987, Li and Wang 1985). 

In this paper, we use this method for generating the solutions of the evolution 
equation for Kelvin-Helmholtz waves near direct resonance. The paper is organised 
as follows: in § 2, we deduce a more general non-linear evolution equation from the 
Lax pair and contains the equation of Kelvin-Helmholtz waves near direct resonance 
as a special case. In § 3, we discuss the Darboux transformation method for this 
equation. In § 4, several types of solutions are given. 

2. A non-linear evolution equation and its Lax pair 

We consider the following two linear problems: 

N = ( N I +  No 

where 

c1 = 2r a, = -iqr bo = iq, + aq 

b, = 2 q  

c,, = -ir, + a r  (2.3) 

O i  O )  N = ( :  :). 
6 is an eigenparameter, a and /3 are real constants and q and r are functions of x , y  
and t .  

From D’a,cp =a&, it yields 

M ,  - D N +  M N  - N M  = 0. (2.4) 
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Substituting (2.1)-(2.3) into (2.4), we obtain 

iq,, + aq, - (qx + pq,) - 2iq2r = o 
-ir,, + ar ,  - (r, +p ry )  + 2iqr2 = 0. 

(2.5) 

This is a (1 + 2)-dimensional non-linear evolution equation. If q = -r* = S,  then 

S , , - ~ ~ S , + ~ ( S , + P S , ) + ~ ~ S ~ ’ S = O  (2.6) 

equation (2.5) reduces to the equation 

which is equation (14) of Ma (1984). 

3. Darboux transformation 

We deduce the Darboux transformation of (2.2). We assume a gauge transformation 

Q = TQ T = (  -2i 2i)5+(z 0 i) Q=(?: f?) 
(3.1) 

(where a, b, c and d are functions of x, y and t). It maps the equation (2.2) into the 
following: 

Then T satisfies the relation T, = N T  - TN, i.e. a, b, c, d ;  q, r, r f  and i satisfy the relations 

b = r f + q  c = P + r  (3.3a) 

a, = rfc - rb d, = ?b - qc 

b, = rfd - qa c, = ?a - rd. 

(3.3b) 

(3.3c) 

Obviously, the polynomial of det T(5) = 45’+ 2i(a - d )  + ad - bc has two zeros t1 
and t2 such that det T(5)=4(5-51)(5-52) and det T(&)=O ( k =  1,2). Since N and 

in (2.2) and (3.2) are traceless, det Q, det Q do not depend on t. It follows from 
the relation det T = det @/det Q that and t2 are independent of t and when 5 = tk 
( k  = 1,2), 5, in (3.1) are collinear, i.e. 

(where k, are independent of t ) .  It can be seen that 

( -2it1 + a)41 + b42 = 0 

(-2i5,+ a )+l+  bt,b2= 0 

cdl + (2i5, + d ) 4 2  = 0 

ct,bl+ (2i5,+ d)$2 = 0 
(3.5) 
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Substituting b and c defined by (3.7) into (3.3), we obtain 

4 =  -q+2i(5*-tl)C$11c1l/A P = - r + 2 i ( 5, - 5, ) C$* &/ A. (3.9) 

We call (3.1) and (3.9) the Darboux transformation of (2.2). It means that the new 
i j ,  r and @ can be expressed by the old q and r and their eigenfunctions Q. Next we 
shall prove the following theorem. 

Theorem. If q, r is the solution of (2.5), and Q is a fundamental solution of (2.1) and 
(2.2), then 4, ? defined by (3.9) is another solution of (2.5). 

Proof: Let 

f i  = ( D T +  T M ) T - ’ .  (3.10) 

From lemma 5 of Li and Gu (1987) M and M are both found to be quadratic 
polynomials of 6 :  

n;i = (” bJ )5‘. 
J = o  CJ -aj  

(3.11) 

We rewrite (3.10) as DT= M T -  TM and substitute M, A?, T, defined by (2.1), (3.11) 
and (3.1) respectively, into it. We have 

-E* - & - a 2  62 
D ( :  :) =2i53( -a2 + a, 

2i(d, - a,)  + ( d ,  - a 2 ) a  
-2i( E ,  + c,) - (az - a2)c 

2i(-do+ a,)+ ( d , a  + 6,c) - (aa, + bc,) 
+ 4 2i(-?, - co) + (E,a + d , c )  - (ca ,  + dc,) 

2i(6, + b,)  + ( d Z +  a J b  
2i(dl - a , )  + (az - a2)d  

2i( 6, + bo) + ( 6, b + 6, d ) - ( a b ,  - ba , ) 
2i( -do+ a,) + (E,b - 6 , d )  - (cb,  - d a , )  

>. 
6 , ~  + 6 , ~  - (ab0 + bco) +( c0a - 6,c - (ca, + dc,) 

Cob + 6od - (ab0 - ba,) 
?Ob - 6od - (cb,  - duo) 

Equating the coefficient of tJ, j = 3, 2, 1 ,  respectively, we obtain 

6, = -2i 

6, = a = ia 6, =2ij  c, = 2 r  (using ( 3 . 3 ~ ) )  

do = -iqr 6 - -  o - q , + w  Po= - f ,  + a? (using (3.3a), ( 3 . 3 ~ ) ) .  

It turns out that M is the same type as M but q, r, q,, r,  are interchanged with cf, 
f, cf,, F, which are defined by (3.9) and D@ = A?@. Since in (3.2) fl is the same type 
as N but q, r are interchanged with 4, r, from the compatibility condition a,b@ = Da,g, 
A?, - Dhr+ fihr - f l M  = 0. It means that 4, r defined by (3.9) also satisfies (2.5). 

6* = E,  = 0 

Remark. Since M, M are both traceless, &, t2, k ,  and k, in (3.5)-(3.7) are constants 
(independent of x, y and t ) .  
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4. Some special solutions of equation (2.6) 

The important case occurs when q = -r* = S,  cj = -P* = s. In this case, t2 = [r, 
+b2= -47, and (3.9) is reduced as follows: 

= 4;, 

(4.1) 

( i )  Since S = 0 is a solution of (2.6), we take S = 0 as our ‘seed’. The fundamental 
solution of the equation 

91r = -it91 9 2 1  = i t 9 2  (4.2) 

9 I I r + P V l ,  = (-2it2-ia)9, c p ’ Y + + 9 2 , ,  = ( 2 i t 2 + i a ) 9 2  (4.3) 

is 

(4.4) 

where f l (z )  and f2(z) are arbitrary functions of z with z = y - px, 

g(x, t ,  5)= -i(&t+25’x+ax5). (4.5) 

We take 

51 = 5+i77 

From (4.1), we obtain 

= f ( z )  exp(2g(x, t ,  5)) f (z)  = exp( 6 (z )  + i8( 2 ) ) .  (4.6) 

-277 exp{ -4i[ 12+ 77’ + (a /2)5]x - 2i5t + ie(y - p x ) }  s= 
cosh[ 8( 5 + a / 4 )  vx + 277t + S(y - Px)] (4.7) 

When p = 0, equation (2.5) is reduced to (1 + 1) dimensions. The function S defined 
by (4.7) is a function of x, t, S ( y )  and 8(y) are constants. This is just a solution 
obtained by the inverse scattering method (Ma 1984). We put 5 = -a /4 ,  S = 0 in (4.7); 
S is reduced to 

S =  -277 e ~ p [ 4 i ( a ~ / 1 6 + . r 7 ~ ) x + $ a t + i e l )  cosh2vt. (4.8) 

This is a periodic solution of (2.6)-it does not decay to zero as 1x1 +CO. The inverse 
scattering method presented in Ma (1984) cannot be applied, but it is not difficult to 
deduce by the Darboux transformation. 

To continue this procedure, we take s defined by (4.8) with 8 = 0, as our ‘seed’; 
from (3.7), we have 

a = -1 ’ia + 2 7  tanh 277t 

d =$a -277 tanh 277t 

b = -277 exp{i[;ar + ( 4 ~ ’ + ~ a 2 ) x ] }  cosh 2771 

c = 277 e x p ( - i [ f a t + ( 4 ~ ’ + ~ a 2 ) x ] }  cosh 277r. 

From (3.1) and (4.4), we obtain 

(4.9) 

&j,, = ( -2i5+a)  eg 

&, = c eg 

&j12  = b e-g 

& j Z 2  = (2i+ d )  e-g. 
(4.10) 
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From (3.6), we take E, = 1 and another special value f l  = iiz, f 2  = f: and 

$1 = 4; 
$ 2 -  - -&* 1 '  

$ - -  I - c p l l ( i ~ ) + 4 1 2 ( i ~ )  

$ - -  2 - cp*l ( iE)  + 4 2 2 ( i E )  

The other new solution of (2.6) is 

(4.1 1) 

(4.12) 

where 

- 3 = 2 7  e ~ p [ i ( : a ' + 4 7 ~ ) x + $ a t ]  cosh 27t 

&1&:+$2&T=-2[(4~2+~a2+472+8~77 t a n h 2 q )  cosh2a+2fh cos(p-26) (4.13) 

2i(fT-f1)&,$T=[(f2+g2) exp(2bi)+ h'exp(2ip-2ib) 

+2h exp(ip)(fcosh 2a + ig  sinh 2a)] (4.14) 

(4.15) 
f= ( 2 ~  + 2 7  cosh 27t)  

h = - 2 7 / ~ 0 s h  27t 

g = - $ a  

p =fat+(4772+$a2)x. 

(ii) We take the 'seed' 

s = A eiw' (4.16) 

2A2 = w 2  - (YW. 

where A, w are constants and satisfy the relation 

(4.17) 

The fundamental solution of the equation 

c p l r  = -i&, + A  eiw'cp2 cp2' = -A e-'"' c p 1 +  i5cpr (4.18) 

(4.19) cplx+Pcply =igq,+Afe'"'cp, 
where 

cp2x + Pcp2y = -fA e-'"'cp, - igcp, 

f = 2 5 - w + a  g =  -252-2a5+A2 (4.20) 
is 

where 

A1 = 4 t 2 +  4 ~ 5 +  tu2 - 2aw = 4A2+ w 2  + 4w5 + 4t2.  (4.22) 
(a) When w = A = 0, it reduces to ( i ) .  
(b) A1 = 0, & = -;U - iA, 4, = (1 + k,) exp(iwt/2), 42 = (1 + k , )  exp(-iwt/2). 
Substituting tl, 41, 42 into (4.1), we obtain 

(4.23) 3 = A e'"'. 
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This is one interesting example which says that under the Darboux transformation 
the solution is invariant. 

w t1 = --+i(w2-2aw)’/‘ 
2 

(c) A I  = w w > 2 a  (4.24) 

w el =tan-’ (4.25) 

e =tan-‘ 

i e, + i - = A e  
2 2 (U’- 2aw)”’ 

2 w - a  --=- ifw w [ ( ~ ~ + 2 a w ) ” ~ + i ( 2 w - a ) ] = - e  W Y  i o  

2 2  2 (w2-2aw)”* 

y 2 = 5 w 2 - 6 w a + a 2 .  (4.26) 
In this case, relation (4.21) is 

exp[$wxy(cos e + i sin e)] exp[i8,-twxy(cos e + i  sin e)+iwt]  
exp[-:wxy(cos e + i  sin e)] 

We take 

w 
-ip-iiB+iwt---y(cose+isin 0)x 

2 
w 

icp -iol - iwt  +-y(cos B + i  sin 0)x 
2 

w 

From (4.1), we obtain 

2 ( ~ ~ - w a ) ” ~  eiw‘[cos(wy sin ex -wt+2cp)  

(4.27) 

+cos 8,  cosh wy cos Ox + i sin 0’ sinh wy cos ex] . (4.28) 

(iii) We take S = exp[i(ax + by - t ) ] ,  as our ‘seed’, where a = 1 - bp - a, and S is 

The fundamental solution of the equation 

S = -A eiw‘ 

[cosh W Y  COS ex - COS el C O S ( ~ Y  -COS ex - w t  + 2cp)l 

a periodic solution of (2.6). 

( P I ‘  = -i,$cp, + sv2 c P 2 1 =  -S*n +i,$Q2 (4.29) 

c p l X  + P c p l y  = igcp, + J 5 P 2  (4.30) 

g = -2t2  - a t +  1 

( ~ 2 ~  + hY = -fS*cpI - igcp, 
where 

f = 2 5 +  1 + a  (4.31) 
is 

) - a  +f&)x+;(-l +a)t 

( 1 + a ) t  

A1 = -4t2+4,$- 3 
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where I , (  z ) ,  I*( z )  are arbitrary functions of z with z = y - px. For simplicity, we take 
5, = (1 +&i)/2 (i.e. A ,  = 1) and put 

d,  = Z(z) exp[i(t, + l ) x + i t ] +  Z*(z)(-i&) exp[-i((, + a ) x  - i t ]  

& =  Z(z)(ir,) exp[ i (&+a)x+i t ] - I*(z)  exp[-i([,+l)x] (4.33) 

where Z(z) = R(z)  e'"" with z = y  -px. From (4.1), we obtain 

S =  exp[i(x - a x  - t ) ]  

i sinh&x +&cosh &x - 2 cos(2x + ax + f + 2f3(z)) 
2 cosh &X + & C O S ( ~ X  + a x +  t +28( z))  

x (  -exp(ibz)-& 

(4.34) 

This is a periodic function of t. 
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